Reg. No. : \square

Question Paper Code : 97114

B.E./B.Tech. DEGREE EXAMINATION, DECEMBER 2015/JANUARY 2016.

Second Semester
Civil Engineering
MA 1151 - MATHEMATICS - II
(Common to all Branches)
(Regulation 2008)
Maximum : 100 marks

Time : Three hours
Answer ALL questions.

$$
\text { PART A }-(10 \times 2=20 \text { marks })
$$

1. Find the Laplace transform of $\frac{t}{e^{t}}$
2. Verify initial value theorem or the function $f(t)=a e^{-b t}$:
3. Find a, b, c such that $\vec{F}=(3 x+y+a z) \vec{i}+(b x+2 y-z) \vec{j}+(3 x+c y+3 z) \vec{k}$ is irrotational.
4. State Green's theorem in a plane.
5. If $f(z)$ is an analytic function whose real part is constant, prove that $f(z)$ is a constant function.
6. Find the invariant points of the transformation $w=\frac{z-1}{z+1}$.
7. Sketch the region of integration of the integral $\int_{0}^{a} \int_{a-x}^{\sqrt{a^{2}-x^{2}}} y d x d y$.
8. Evaluate $\int_{0}^{1} \int_{0}^{z} \int_{0}^{y+z} d x d y d z$.
9. Define singular point.
10. Find the residue of $f(z)=\tan z$ at its poles.

$$
\text { PART B }-(5 \times 16=80 \text { marks })
$$

11. (a) (i) Find the Laplace transform of the following functions

> (1) $t^{2} e^{-t} \cos t$
> (2) $\frac{e^{a t}-\cos b t}{t}$
(ii) Using convolution theorem, find $L^{-1}\left\{\frac{1}{\left(s^{3}+a^{2}\right)^{2}}\right\}$.

Or
(b) (i) Find
the Laplace
transform
of

$$
f(t)=\left\{\begin{array}{cc}
t, & 0 \leq t \leq a \tag{8}\\
2 a-t, & a \leq t \leq 2 a
\end{array} f(t+2 a)=f(t)\right.
$$

(ii) Using Laplace transform, solve $\frac{d^{2} y}{d t^{2}}+y=\sin 2 t$, with $y(0)=0$ and $y^{\prime}(0)=0$.
12. (a) (i) Find the angle between the surfaces $x \log z=y^{2}-1$ and $x^{2} y=2-z$ at the point $(1,1,1)$.
(ii) Prove that $\nabla^{2}\left(r^{n}\right)=n(n+1) r^{n-2}$ where $\bar{r}=x \bar{i}+y \bar{j}+z \bar{k}$.

Or

(b) Verify divergence theorem for the function $\bar{F}=4 x z \bar{i}-y^{2} \bar{j}+y z \bar{k}$ taken over the cube bounded by the planes $x=0, x=1, y=0, y=1, z=0$, $z=1$.
13. (a) (i) If $f(z)=u+c v$ is an analytic function of prove that

$$
\begin{equation*}
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)(\log |f(z)|)=0 \tag{8}
\end{equation*}
$$

(ii) Find the image of the square whose vertices are $z=1+i, 3+i$, $1+3 i$ and $3+3 i$ under the transformation $w=\frac{1}{z}$.

Or

(b) (i) Determine the analytic function $f(z)=u+i v$, if $u=\frac{\sin 2 x}{\cosh 2 y-\cos 2 x}$.
(ii) Find the bilinear transformation which maps the points $z=\infty, i, 0$ into the points $W=i, 0, \infty$.
14. (a) (i) Evaluate the integral $\int_{0}^{a \sqrt{a^{2}-x^{2}}} \int_{0}^{2} \sqrt{x^{2}+y^{2}} d x d y$ by charging to polar coordinates.
(ii) Evaluate $\int_{0}^{1} \int_{4 y}^{4} e^{x^{2}} d x d y$ by changing the order of integration.

Or
(b) (i) Evaluate $\iint x^{2} y^{2} d x d y$ over the circle $x^{2}+y^{2}=1$.
(ii) Prove that the volume enclosed by the cylinder $x^{2}+y^{2}=2 a x$ and

$$
\begin{equation*}
z^{2}=2 a x \text { is } \frac{128 a^{8}}{15} \tag{8}
\end{equation*}
$$

15. (a) (i) Determine the Laurent's series expansion of $f(z)=\frac{7 z-2}{(z+1) z(z-2)}$ in the region $1<|z+1|<3$.
(ii) By integrating around a unit circle, evaluate $\int_{0}^{2 \pi} \frac{\cos 3 \theta}{5-4 \cos \theta} d \theta$,

Or
(b) (i) Using Cauchy's integral formula evaluate $\int_{C} \frac{e^{z}}{\left(z^{2}+\pi^{2}\right)^{2}} d z$ where C is the circle $|z|=4$.
(ii) Evaluating using contour integration $\int_{0}^{\infty} \frac{\cos a x}{x^{2}+1} d x, a \geq 0$ s

